
China Collegiate Programming Contest 2020
Weihai Site
Tutorial

Problem Setters

Nanjing University

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 1 / 26

A. Golden Spirit

Problem

There are n guys on each side of the bridge. Each guy wants to go across
the bridge, relax, finally go across the bridge again. Everyone needs t
minutes to go across the bridge and x minutes to relax. You are going to
help these guys, and you want to know the minimum time.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 2 / 26

A. Golden Spirit

Solution

Assume that you start on the left side of the bridge. There are four steps:

1 It takes 2nt minutes to help all 2n guys go across the bridge, after
which you still on the left side.

2 Make a decision to wait on the left or the right side, and if you
choose the right side, it takes another t minutes.

3 You need to wait for the first guy to finish relaxing on the side you
chose.

4 It takes another 2nt minutes to help all guys go across the bridge
again.

Therefore the answer is simply
min(2nt + max(2nt, 2t + x), 2nt + max(2nt + t, t + x)), considering the
choice of the second step and taking the minimum.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 3 / 26

A. Golden Spirit

Solution

Assume that you start on the left side of the bridge. There are four steps:

1 It takes 2nt minutes to help all 2n guys go across the bridge, after
which you still on the left side.

2 Make a decision to wait on the left or the right side, and if you
choose the right side, it takes another t minutes.

3 You need to wait for the first guy to finish relaxing on the side you
chose.

4 It takes another 2nt minutes to help all guys go across the bridge
again.

Therefore the answer is simply
min(2nt + max(2nt, 2t + x), 2nt + max(2nt + t, t + x)), considering the
choice of the second step and taking the minimum.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 3 / 26

B. Labyrinth

Problem

Given an n ×m grid graph with at most k vertices removed. Answer q
queries on the shortest path between two vertices.

Observation

Given query between (x1, y1) and (x2, y2) (assume x1 ≤ x2 and y1 ≤ y2),

if there is no black hole in [x1, x2]× [y1, y2], then the shortest path is
|x1 − x2|+ |y1 − y2|;
otherwise, there must exist a shortest path passing an adjacent vertex
of some black hole.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 4 / 26

B. Labyrinth

Problem

Given an n ×m grid graph with at most k vertices removed. Answer q
queries on the shortest path between two vertices.

Observation

Given query between (x1, y1) and (x2, y2) (assume x1 ≤ x2 and y1 ≤ y2),

if there is no black hole in [x1, x2]× [y1, y2], then the shortest path is
|x1 − x2|+ |y1 − y2|;
otherwise, there must exist a shortest path passing an adjacent vertex
of some black hole.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 4 / 26

B. Labyrinth

Problem

Given an n ×m grid graph with at most k vertices removed. Answer q
queries on the shortest path between two vertices.

Observation

Given query between (x1, y1) and (x2, y2) (assume x1 ≤ x2 and y1 ≤ y2),

if there is no black hole in [x1, x2]× [y1, y2], then the shortest path is
|x1 − x2|+ |y1 − y2|;

otherwise, there must exist a shortest path passing an adjacent vertex
of some black hole.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 4 / 26

B. Labyrinth

Problem

Given an n ×m grid graph with at most k vertices removed. Answer q
queries on the shortest path between two vertices.

Observation

Given query between (x1, y1) and (x2, y2) (assume x1 ≤ x2 and y1 ≤ y2),

if there is no black hole in [x1, x2]× [y1, y2], then the shortest path is
|x1 − x2|+ |y1 − y2|;
otherwise, there must exist a shortest path passing an adjacent vertex
of some black hole.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 4 / 26

B. Labyrinth

Solution

Preprocess compute single source shortest paths dv (·) for every key
vertex v adjacent to some black hole (at most 4k such
vertices).

Query test if any black hole is in [x1, x2]× [y1, y2].

If so, return |x1 − x2|+ |y1 − y2|.
Otherwise, return minv{dv (x1, y1) + dv (x2, y2)} where v
is a black hole.

Time complexity: O(kmn) for preprocessing, O(k) for each query.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 5 / 26

C. Rencontre

Problem

Given a weighted tree T and three lists of nodes. Choose u1, u2, u3 from
the three lists uniformly and independently, answer the expected value of

f (u1, u2, u3) = min
v∈T

(dis(u1, v) + dis(u2, v) + dis(u3, v))

.

Observation

For each tuple (u1, u2, u3), there exists a unique node v such that
dis(u1, v) + dis(u2, v) + dis(u3, v) is minimized, such that

f (u1, u2, u3) =
1

2
(dis(u1, u2) + dis(u1, u3) + dis(u2, u3))

By the linearity of expectation, we can calculate the expected value of
dis(u1, u2), dis(u1, u3), dis(u2, u3), respectively.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 6 / 26

C. Rencontre

Problem

Given a weighted tree T and three lists of nodes. Choose u1, u2, u3 from
the three lists uniformly and independently, answer the expected value of

f (u1, u2, u3) = min
v∈T

(dis(u1, v) + dis(u2, v) + dis(u3, v))

.

Observation

For each tuple (u1, u2, u3), there exists a unique node v such that
dis(u1, v) + dis(u2, v) + dis(u3, v) is minimized, such that

f (u1, u2, u3) =
1

2
(dis(u1, u2) + dis(u1, u3) + dis(u2, u3))

By the linearity of expectation, we can calculate the expected value of
dis(u1, u2), dis(u1, u3), dis(u2, u3), respectively.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 6 / 26

C. Rencontre

Problem (Reformulated)

Given a weighted tree and two lists of nodes. Choose u1, u2 from the two
lists uniformly and independently, calculate the expected value of
dis(u1, u2).

Solution

Calculate the contribution of each edge respectively. Assume edge e with
weight we divides the tree T into 2 parts T1,T2, the contribution of e is

we · (Pr [u1 ∈ T1] · Pr [u2 ∈ T2] + Pr [u1 ∈ T2] · Pr [u2 ∈ T1])

It can be accumulated by a depth-first search on the tree.
Time complexity: O(n).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 7 / 26

D. ABC Conjecture

Problem

Given a positive integer c, determine if there exists positive integers a, b
such that a + b = c and the product of distinct prime divisors of abc is
less than c.

Solution

If c is square free, then rad(abc) ≥ rad(c) = c , hence there don’t
exist such a, b;

If c contains a square factor, namely c = p2q (p > 1), then we have
a = pq and b = p(p − 1)q, such that a + b = c and
rad(abc) = rad(p4(p − 1)q3) ≤ rad(p(p − 1)q) < p2q = c .

To check if c is square free, check p2 factors for p up to 3
√
c , and check if

c/p is a square integer for p up to 3
√
c . Overall time complexity is O(3

√
c)

per case.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 8 / 26

D. ABC Conjecture

Problem

Given a positive integer c, determine if there exists positive integers a, b
such that a + b = c and the product of distinct prime divisors of abc is
less than c.

Solution

If c is square free, then rad(abc) ≥ rad(c) = c , hence there don’t
exist such a, b;

If c contains a square factor, namely c = p2q (p > 1), then we have
a = pq and b = p(p − 1)q, such that a + b = c and
rad(abc) = rad(p4(p − 1)q3) ≤ rad(p(p − 1)q) < p2q = c .

To check if c is square free, check p2 factors for p up to 3
√
c , and check if

c/p is a square integer for p up to 3
√
c . Overall time complexity is O(3

√
c)

per case.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 8 / 26

D. ABC Conjecture

Problem

Given a positive integer c, determine if there exists positive integers a, b
such that a + b = c and the product of distinct prime divisors of abc is
less than c.

Solution

If c is square free, then rad(abc) ≥ rad(c) = c , hence there don’t
exist such a, b;

If c contains a square factor, namely c = p2q (p > 1), then we have
a = pq and b = p(p − 1)q, such that a + b = c and
rad(abc) = rad(p4(p − 1)q3) ≤ rad(p(p − 1)q) < p2q = c .

To check if c is square free, check p2 factors for p up to 3
√
c , and check if

c/p is a square integer for p up to 3
√
c . Overall time complexity is O(3

√
c)

per case.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 8 / 26

E. So Many Possibilities...

Problem

Given n integers a1, ..., an. An operation is to choose an index j with
positive aj uniformly, subtract aj by 1.
Calculate the expected number of zeroes after taking m operations on
array a.

Solution

For a series of operations, let si be the index chosen by the ith operation,
then we get an operation sequence s = (s1, s2, ..., sm). Let cnts(i) be the
number of occurrences of i in the sequence s.
A sequence is valid if and only if:

∀1 ≤ i ≤ n, cnts(i) ≤ ai

Let Γ be the set of all valid operation sequences (s1, ..., sm).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 9 / 26

E. So Many Possibilities...

Solution

Fix an operation sequence s with length l , let σsi (1 ≤ i ≤ l) be the number
of nonzero integers before the ith operation, and σs be the number of
nonzero integers after l operations. Define the conditional probability p(s):

p(s) =
l∏

k=1

1

σsi

The probability of a valid operation sequence s occurs equal to p(s), thus
the answer equal to ∑

s∈Γ

p(s) · (n − σs)

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 10 / 26

E. So Many Possibilities...

Solution

Define Γl ,S(0 ≤ l ≤ m,S ⊆ [n]) as the set of sequences(s1, ..., sl) which
satisfy the following conditions:

∀1 ≤ i ≤ l , si = 0 or si ∈ S

∀j ∈ S , cnts(j) = aj

Here sk = 0 denotes the index of the k-th operation /∈ S .
Apply a bitmask dp, define dp(l ,S)(0 ≤ l ≤ m, S ⊆ [n]) as

dp(l ,S) =
∑
s∈Γl,S

p(s)

The bitmask dp can be done in O(2n · nm).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 11 / 26

E. So Many Possibilities...

Solution

Since for any s ∈ Γm,S , the cnts(0) is same, and we need to color each 0
by an index x /∈ S with ensuring for each color j , its occurrence is strictly
less than aj .
Let c(S) denotes the number of ways to color the 0s. Calculating c(S) is
a traditional dynamic programming problem, which can be computed in
O(nm2).
Apply the dynamic programming for each subset of [n] requires
O(2n · nm2) time, but with some smart implementation, it can be solved in
O(2n ·m2) totally.
Finally, the answer can be accumulated as∑

S⊆[n]

dp(m,S)c(S) · |S |

Time complexity: O(2n · (n + m)m).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 12 / 26

F. Skeleton Dynamization

Problem

Factorize a given graph as the Cartesian product of a path P and another
graph G .

The Cartesian product (V ,E) of two graphs (V1,E1) and (V2,E2) is
defined as

V = V1 × V2;

E = {((u, v1), (u, v2)) : u ∈ V1, v1v2 ∈ E2} ∪ {((u1, v), (u2, v)) :
u1u2 ∈ E1, v ∈ V2}.

In this problem, the Cartesian product of a path P and a graph G is a
layered graph, where each layer is a copy of G and the corresponding
vertices of adjacent layers are interconnected by edges.
Without loss of generality, we assume the size of P is at least 2.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 13 / 26

F. Skeleton Dynamization

Problem

Factorize a given graph as the Cartesian product of a path P and another
graph G .

The Cartesian product (V ,E) of two graphs (V1,E1) and (V2,E2) is
defined as

V = V1 × V2;

E = {((u, v1), (u, v2)) : u ∈ V1, v1v2 ∈ E2} ∪ {((u1, v), (u2, v)) :
u1u2 ∈ E1, v ∈ V2}.

In this problem, the Cartesian product of a path P and a graph G is a
layered graph, where each layer is a copy of G and the corresponding
vertices of adjacent layers are interconnected by edges.

Without loss of generality, we assume the size of P is at least 2.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 13 / 26

F. Skeleton Dynamization

Problem

Factorize a given graph as the Cartesian product of a path P and another
graph G .

The Cartesian product (V ,E) of two graphs (V1,E1) and (V2,E2) is
defined as

V = V1 × V2;

E = {((u, v1), (u, v2)) : u ∈ V1, v1v2 ∈ E2} ∪ {((u1, v), (u2, v)) :
u1u2 ∈ E1, v ∈ V2}.

In this problem, the Cartesian product of a path P and a graph G is a
layered graph, where each layer is a copy of G and the corresponding
vertices of adjacent layers are interconnected by edges.
Without loss of generality, we assume the size of P is at least 2.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 13 / 26

F. Skeleton Dynamization

Solution Sketch
1 Find a vertex u with the minimum degree, which must be in the first

layer;

2 Enumerate which incident edge uv to be cross-layer edge;

3 Perform a two-source (from u and v) breadth-first search; the
corresponding vertices in the two layers have the same distance and
are connected by an edge. Hence we can construct the first two layers
in this step.

4 Iteratively construct all remaining layers by extending the cross-layer
edges of the top layer. Check the graph of the constructed layer is
isomorphic to the first layer.

If no conflict is found in step 2 or 3, then we obtain a valid factorization.
Note that step 2 and step 3 can be implemented in O(m) time.

Note that the maximum degree of u is O(
√
M), so the total time

complexity is O(M
√
M).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 14 / 26

G. Caesar Cipher

Problem

Maintain an array of integers which supports the following operations:

Increase every element in [l , r] by one, modulo 65536;

Ask if two subarrays [x , x + l], [y , y + l] are the same.

Solution

Note that overflow occurs at most O(nq/65536) times (about
5× 106), hence we may process every single overflow.

Use a segment tree to maintain rolling hash bnan mod p; hence the
rolling hash of any subarray can be computed by a range sum query.

Use another segment tree to support query on the maximum of a
range; this is used to detect overflow. Once overflow detected on
some element, modify the hash value in the segment tree.

The total time complexity is O(nq log n/65536 + q log n).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 15 / 26

G. Caesar Cipher

Problem

Maintain an array of integers which supports the following operations:

Increase every element in [l , r] by one, modulo 65536;

Ask if two subarrays [x , x + l], [y , y + l] are the same.

Solution

Note that overflow occurs at most O(nq/65536) times (about
5× 106), hence we may process every single overflow.

Use a segment tree to maintain rolling hash bnan mod p; hence the
rolling hash of any subarray can be computed by a range sum query.

Use another segment tree to support query on the maximum of a
range; this is used to detect overflow. Once overflow detected on
some element, modify the hash value in the segment tree.

The total time complexity is O(nq log n/65536 + q log n).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 15 / 26

G. Caesar Cipher

There is also a modulus-agnostic solution. Let bi = ai − ai−1 mod 65536,
then

query of type 2 asks if ax = ay and
(bx+1, bx+2, · · · , bx+l−1) = (by+1, by+2, · · · , by+l−1) ;

query of type 1 only updates bl+1 and br+1.

Using rolling hash to maintain {bi}, each can be done in O(log n) time.
The total time complexity is thus O(q log n).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 16 / 26

H. Message Bomb

Problem

There are n people and m groups and 3 types of events occur in order:

1 Person u enters group v .

2 Person u leaves group v .

3 Person u sends a message in group v .

We need to calculate the total number of messages each person receives.

Observation

For a person u staying in a group v between time [L,R], we use cnttv to
denote the total number of messages in group v before time t. The
message he receives equal to

cntRv − cntLv − (the number of messages he sends during [L,R])

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 17 / 26

H. Message Bomb

Solution

For each group v , set a counter cntv denotes the total messages. Scan all
the events in group v :

Once person u enters, subtract ansu by cntv .

Once person u leaves, add ansu by cntv .

Once person u sends a message, add cntv by 1 and subtract ansu by
one.

Finally for each person u stay in group v in the end, add ansu by cntv .
Time complexity: O(n + m + q).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 18 / 26

I. Sean the Cuber

Problem

Given two states of 2× 2× 2 Rubik cube, find the minimum number of
steps to transform the first to the second.
Every quarter twist of a half-plane is counted as one step, and rotating the
entire cube doesn’t count into the number of steps.

Observation

We may fix a corner of the cube. For example, by only allowing rotating
the right, back, bottom half-planes from the solved state, the left upper
front corner is fixed. The number of states, given one corner fixed, is
3674160.
We may rotate the entire cube of the initial and the final states such that
the left upper front corner is identical to the fixed one. Now we only have
to consider the operations of rotating the right, back, bottom half-planes.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 19 / 26

I. Sean the Cuber

Problem

Given two states of 2× 2× 2 Rubik cube, find the minimum number of
steps to transform the first to the second.
Every quarter twist of a half-plane is counted as one step, and rotating the
entire cube doesn’t count into the number of steps.

Observation

We may fix a corner of the cube. For example, by only allowing rotating
the right, back, bottom half-planes from the solved state, the left upper
front corner is fixed. The number of states, given one corner fixed, is
3674160.
We may rotate the entire cube of the initial and the final states such that
the left upper front corner is identical to the fixed one. Now we only have
to consider the operations of rotating the right, back, bottom half-planes.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 19 / 26

I. Sean the Cuber

If we perform breadth-first search of every test case, the total time
complexity is O(T |G |), where |G | = 3674160. Even if we use bidirectional
search, the complexity is still not acceptable.

Observation 2

Let A be the initial state, and B be the final state in 2× 2× 2 Rubik cube
group, then the shortest operation from A to B is equal to the shortest
path from the solved state to A−1B. So we just have to preprocess the
distance from the solved state to every state.

But how to compute A−1B? In other words, how to compute the inverse
and composition of group elements?
We may represent each group element as a 24-order permutation,
describing how the 24 small squares (4 per face) are permuted. Then we
may compute the inversion and composition on the permutations.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 20 / 26

I. Sean the Cuber

If we perform breadth-first search of every test case, the total time
complexity is O(T |G |), where |G | = 3674160. Even if we use bidirectional
search, the complexity is still not acceptable.

Observation 2

Let A be the initial state, and B be the final state in 2× 2× 2 Rubik cube
group, then the shortest operation from A to B is equal to the shortest
path from the solved state to A−1B. So we just have to preprocess the
distance from the solved state to every state.

But how to compute A−1B? In other words, how to compute the inverse
and composition of group elements?
We may represent each group element as a 24-order permutation,
describing how the 24 small squares (4 per face) are permuted. Then we
may compute the inversion and composition on the permutations.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 20 / 26

I. Sean the Cuber

If we perform breadth-first search of every test case, the total time
complexity is O(T |G |), where |G | = 3674160. Even if we use bidirectional
search, the complexity is still not acceptable.

Observation 2

Let A be the initial state, and B be the final state in 2× 2× 2 Rubik cube
group, then the shortest operation from A to B is equal to the shortest
path from the solved state to A−1B. So we just have to preprocess the
distance from the solved state to every state.

But how to compute A−1B? In other words, how to compute the inverse
and composition of group elements?

We may represent each group element as a 24-order permutation,
describing how the 24 small squares (4 per face) are permuted. Then we
may compute the inversion and composition on the permutations.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 20 / 26

I. Sean the Cuber

If we perform breadth-first search of every test case, the total time
complexity is O(T |G |), where |G | = 3674160. Even if we use bidirectional
search, the complexity is still not acceptable.

Observation 2

Let A be the initial state, and B be the final state in 2× 2× 2 Rubik cube
group, then the shortest operation from A to B is equal to the shortest
path from the solved state to A−1B. So we just have to preprocess the
distance from the solved state to every state.

But how to compute A−1B? In other words, how to compute the inverse
and composition of group elements?
We may represent each group element as a 24-order permutation,
describing how the 24 small squares (4 per face) are permuted. Then we
may compute the inversion and composition on the permutations.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 20 / 26

J. Steins;Game

Problem

Given n piles of stones, each colored in black or white. Two players take
turns to apply one of the following operations:

Remove some positive number of stones from any white pile.

Remove some positive number of stones from the smallest black pile.

The player who can’t make a move loses.

Calculate the number of ways to color each pile of stones so that the
second player wins under the optimal strategy for both players.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 21 / 26

J. Steins;Game

If all piles are white, then the problem reduces to Nim.

By Sprague-Grundy theorem, one only needs to find out the Grundy
value represented by a set of black piles.

Theorem

For a set of black piles, let m be the number of stones in the smallest pile,
and cm be the number of piles with m stones. The Grundy value for the
set of black piles is equal to

m − ((cm + [all the black piles have same size]) mod 2)

The theorem can be found through computing the Grundy value for
certain cases and observing the pattern. The proof can be done
through either induction or handwaving.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 22 / 26

J. Steins;Game

If all piles are white, then the problem reduces to Nim.

By Sprague-Grundy theorem, one only needs to find out the Grundy
value represented by a set of black piles.

Theorem

For a set of black piles, let m be the number of stones in the smallest pile,
and cm be the number of piles with m stones. The Grundy value for the
set of black piles is equal to

m − ((cm + [all the black piles have same size]) mod 2)

The theorem can be found through computing the Grundy value for
certain cases and observing the pattern. The proof can be done
through either induction or handwaving.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 22 / 26

J. Steins;Game

If all piles are white, then the problem reduces to Nim.

By Sprague-Grundy theorem, one only needs to find out the Grundy
value represented by a set of black piles.

Theorem

For a set of black piles, let m be the number of stones in the smallest pile,
and cm be the number of piles with m stones. The Grundy value for the
set of black piles is equal to

m − ((cm + [all the black piles have same size]) mod 2)

The theorem can be found through computing the Grundy value for
certain cases and observing the pattern. The proof can be done
through either induction or handwaving.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 22 / 26

J. Steins;Game

Solution Sketch
1 Sort all piles by the number of stones, enumerate the size m of the

smallest black pile (from smallest to largest), the number of such
piles, and whether all the black piles have the same size.

2 Since all the piles smaller than m must be painted white, calculate
the number of ways to color the piles larger than m to make the xor
sum of Grundy values equal to 0. This can be efficiently done by
maintaining the linear basis of piles larger than m.

3 The overall time complexity is O(n log n + n log max ai)

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 23 / 26

K. Tree Tweaking

Problem

Given a permutation p1, p2, . . . , pn and 1 ≤ l ≤ r ≤ n. One may arbitrarily
permute the numbers with indices in the interval [l , r]. Minimize the sum
of depths of every node in the binary search tree built according to the
new permutation.

Problem(Subtask)

Given a permutation p1, p2, . . . , pn. Calculate the sum of depths of every
node in the binary search tree built according to the new permutation.

Solution(Subtask)

Building the binary search tree directly leads to O(n2) time complexity.
Note that the binary search tree partitions all numbers to be added into
some disjoint intervals at each step. Maintaining these intervals with some
proper data structure(e.g., std::set) leads to O(n log n) time complexity.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 24 / 26

K. Tree Tweaking

Problem

Given a permutation p1, p2, . . . , pn and 1 ≤ l ≤ r ≤ n. One may arbitrarily
permute the numbers with indices in the interval [l , r]. Minimize the sum
of depths of every node in the binary search tree built according to the
new permutation.

Problem(Subtask)

Given a permutation p1, p2, . . . , pn. Calculate the sum of depths of every
node in the binary search tree built according to the new permutation.

Solution(Subtask)

Building the binary search tree directly leads to O(n2) time complexity.
Note that the binary search tree partitions all numbers to be added into
some disjoint intervals at each step. Maintaining these intervals with some
proper data structure(e.g., std::set) leads to O(n log n) time complexity.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 24 / 26

K. Tree Tweaking

Problem

Given a permutation p1, p2, . . . , pn and 1 ≤ l ≤ r ≤ n. One may arbitrarily
permute the numbers with indices in the interval [l , r]. Minimize the sum
of depths of every node in the binary search tree built according to the
new permutation.

Problem(Subtask)

Given a permutation p1, p2, . . . , pn. Calculate the sum of depths of every
node in the binary search tree built according to the new permutation.

Solution(Subtask)

Building the binary search tree directly leads to O(n2) time complexity.
Note that the binary search tree partitions all numbers to be added into
some disjoint intervals at each step. Maintaining these intervals with some
proper data structure(e.g., std::set) leads to O(n log n) time complexity.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 24 / 26

K. Tree Tweaking

Solution Sketch
1 Build the binary search tree for numbers with indices in the interval

[1, l − 1]. This step takes O(n log n) time. Note that now the
remaining numbers are partitioned into some disjoint intervals, and
each interval can be solved independently.

2 Now consider how to solve for each interval. Let dpl ,r be the best
answer we can get for the interval [l , r]. With proper preprocessing,
the dynamic programming can be calculated in O(k3) time.

3 The overall time complexity is O(n log n + k3).

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 25 / 26

L. Clock Master

Problem

Given a positive integer b, find positive integers x1, x2, · · · , xn such that
x1 + x2 + · · ·+ xn ≤ b and lcm(x1, x2, · · · , xn) is maximized.

Observation

In optimal solution, every xi is a prime power.
Proof: for prime powers pi and qj (p 6= q), lcm(pi , qj) = piqj whereas
pi + qj < piqj .

Problem (Reformulated)

Let P = {pi : p ∈ Prime, i ∈ Z+} be the set of prime powers. Find a set
S ⊂ P such that

∑
S ≤ b and lcm S =

∏
S is maximized.

This is a standard knapsack problem. Since |P ∩ [1, b]| = O(b/ log b), it
can be solved in O(b2/ log b) time.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 26 / 26

L. Clock Master

Problem

Given a positive integer b, find positive integers x1, x2, · · · , xn such that
x1 + x2 + · · ·+ xn ≤ b and lcm(x1, x2, · · · , xn) is maximized.

Observation

In optimal solution, every xi is a prime power.
Proof: for prime powers pi and qj (p 6= q), lcm(pi , qj) = piqj whereas
pi + qj < piqj .

Problem (Reformulated)

Let P = {pi : p ∈ Prime, i ∈ Z+} be the set of prime powers. Find a set
S ⊂ P such that

∑
S ≤ b and lcm S =

∏
S is maximized.

This is a standard knapsack problem. Since |P ∩ [1, b]| = O(b/ log b), it
can be solved in O(b2/ log b) time.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 26 / 26

L. Clock Master

Problem

Given a positive integer b, find positive integers x1, x2, · · · , xn such that
x1 + x2 + · · ·+ xn ≤ b and lcm(x1, x2, · · · , xn) is maximized.

Observation

In optimal solution, every xi is a prime power.
Proof: for prime powers pi and qj (p 6= q), lcm(pi , qj) = piqj whereas
pi + qj < piqj .

Problem (Reformulated)

Let P = {pi : p ∈ Prime, i ∈ Z+} be the set of prime powers. Find a set
S ⊂ P such that

∑
S ≤ b and lcm S =

∏
S is maximized.

This is a standard knapsack problem. Since |P ∩ [1, b]| = O(b/ log b), it
can be solved in O(b2/ log b) time.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 26 / 26

L. Clock Master

Problem

Given a positive integer b, find positive integers x1, x2, · · · , xn such that
x1 + x2 + · · ·+ xn ≤ b and lcm(x1, x2, · · · , xn) is maximized.

Observation

In optimal solution, every xi is a prime power.
Proof: for prime powers pi and qj (p 6= q), lcm(pi , qj) = piqj whereas
pi + qj < piqj .

Problem (Reformulated)

Let P = {pi : p ∈ Prime, i ∈ Z+} be the set of prime powers. Find a set
S ⊂ P such that

∑
S ≤ b and lcm S =

∏
S is maximized.

This is a standard knapsack problem. Since |P ∩ [1, b]| = O(b/ log b), it
can be solved in O(b2/ log b) time.

Problem Setters (Nanjing University) CCPC’20 Weihai Tutorial 26 / 26

