有一枚硬币,抛出正面H的概率为a/b,抛出反面T的概率为1-a/b。现在TT小朋友开始玩丢硬币的游戏,并且把每次
抛出的结果记录下来,正面记为H,反面记为T,于是她得到了一个抛硬币序列HTHHT…。她突然想到一个问题:在
抛出正面和反面概率都是1/2的情况下,要使得抛出的序列出现目标序列HT,期望要抛多少次。然而经过1秒的思考
以后她发现,若第一次抛出的是T,那么还需要期望抛出HT的次数,如果第一次抛出的是H,则期望只需要抛出T的
次数,而期望抛出T的次数显然是2。她设抛出HT的期望次数是x,则得到了方程:
x=1+(1/2*x+1/2*2)
解得x=4,所以抛出HT的期望次数是4次。
她在解决了这个弱化很多的问题以后,开始思考对于一般情况下,抛出正反面的概率不一定相同,且抛出的目标序
列不一定为HT时需要的期望步数。然而经过很长一段时间的苦思冥想仍然无果,于是她开始求助于你。