#2535. [Noi2010]Plane 航空管制2

内存限制:128 MiB 时间限制:10 Sec

题目描述

世博期间,上海的航空客运量大大超过了平时,随之而来的航空管制也频频发生。最近,小X就因为航空管制,连续两次在机场被延误超过了两小时。对此,小X表示很不满意。 在这次来烟台的路上,小 X不幸又一次碰上了航空管制。于是小 X开始思考关于航空管制的问题。 假设目前被延误航班共有 n个,编号为 1至n。机场只有一条起飞跑道,所有的航班需按某个顺序依次起飞(称这个顺序为起飞序列)。定义一个航班的起飞序号为该航班在起飞序列中的位置,即是第几个起飞的航班。 起飞序列还存在两类限制条件:  第一类(最晚起飞时间限制):编号为 i的航班起飞序号不得超过 ki;  第二类(相对起飞顺序限制):存在一些相对起飞顺序限制(a, b),表示航班 a的起飞时间必须早于航班 b,即航班 a的起飞序号必须小于航班 b 的起飞序号。 小X 思考的第一个问题是,若给定以上两类限制条件,是否可以计算出一个可行的起飞序列。第二个问题则是,在考虑两类限制条件的情况下,如何求出每个航班在所有可行的起飞序列中的最小起飞序号。

输入格式

第一行包含两个正整数 n和m,n表示航班数目,m表示第二类限制条件(相对起飞顺序限制)的数目。 第二行包含 n个正整数 k1, k2, „, kn。 接下来 m行,每行两个正整数 a和b,表示一对相对起飞顺序限制(a, b),其中1≤a,b≤n, 表示航班 a必须先于航班 b起飞。

输出格式

由两行组成。
第一行包含 n个整数,表示一个可行的起飞序列,相邻两个整数用空格分隔。
输入数据保证至少存在一个可行的起飞序列。如果存在多个可行的方案,输出任
意一个即可。
第二行包含 n个整数 t1, t2, „, tn,其中 ti表示航班i可能的最小起飞序
号,相邻两个整数用空格分隔。

样例

样例输入


			
5 5
4 5 2 5 4
1 2
3 2
5 1
3 4
3 1

样例输出


			
3 5 1 4 2
3 4 1 2 1

数据范围与提示